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Abstract: Translating images generated by label-free microscopy imaging, such as Coherent
Anti-Stokes Raman Scattering (CARS), into more familiar clinical presentations of histopatho-
logical images will help the adoption of real-time, spectrally resolved label-free imaging in
clinical diagnosis. Generative adversarial networks (GAN) have made great progress in image
generation and translation, but have been criticized for lacking precision. In particular, GAN
has often misinterpreted image information and identified incorrect content categories during
image translation of microscopy scans. To alleviate this problem, we developed a new Pix2pix
GAN model that simultaneously learns classifying contents in the images from a segmentation
dataset during the image translation training. Our model integrates UNet+ with seg-cGAN,
conditional generative adversarial networks with partial regularization of segmentation. Technical
innovations of the UNet+/seg-cGAN model include: (1) replacing UNet with UNet+ as the
Pix2pix cGAN’s generator to enhance pattern extraction and richness of the gradient, and
(2) applying the partial regularization strategy to train a part of the generator network as the
segmentation sub-model on a separate segmentation dataset, thus enabling the model to identify
correct content categories during image translation. The quality of histopathological-like images
generated based on label-free CARS images has been improved significantly.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Coherent anti-Stokes Raman scattering (CARS) is a nonlinear four-wave mixing process that
is used to enhance the weak (spontaneous) Raman signal by several orders [1]. CARS is a
label-free, 3-dimensional (3D), real-time optical imaging modality that can provide biological
tissue images with sub-cellular level resolution [2–4]. The CARS modality has been used in
disease research and pathological diagnosis by imaging target tissue both ex vivo and in vivo [5–8].
In this manuscript, we are developing a method to convert the images from a high-resolution,
label-free, 3-D capable optical imaging system to H&E pseudo-stained imaging. Only a few
imaging modalities fall into this category, such as autofluorescence imaging, second-harmonic
generation (SHG), and third-harmonic generation (THG). These imaging modalities can achieve
high resolution label-free images, but they are not suitable for all tissue types [9]. CARS is
sensitive to certain chemical bonds and is not limited to a particular tissue type. Therefore, by
tuning the wavelength of the laser source in our CARS system, we can image an array of different
tissue types. The chemical bond contrast has the potential for pathological diagnosis similar to
histopathological stained images, such as through hematoxylin-eosin (H&E) staining, to view the
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tissue architecture. However, pathologists and clinical investigators are used to interpreting the
images in H&E presentation.

Prior research shows the potential for stain-less staining or virtual staining [10,11]. Stainless
staining for computed histopathology is possible by translating infrared (IR) microscopy to H&E
images, without the need of labeling agents. It can provide high quality images in some cases.
However, IR microscopy is constrained in its applications and outcomes due to its fundamental
limitations, including the high spectral similitude between spectra of different bacteria, high
signal overlap and widening of adjacent signals, incompatibility for the acquisition of spectra into
samples with content of intrinsic water, background signals of substrate producing “false” signals
not associated with the sample, signals with weak intensity resulting in a low signal-to-noise
ratio (SNR), and excessive spectral noise [12,13]. In addition, tissue autofluorescence is defined
as a natural ability of tissue to fluoresce when exposed to a certain light wavelength and is not
suitable for imaging most tissue types [14].

In this paper, we developed a deep learning enabled image-to-image translation model that can
map label-free CARS images into an H&E image presentation automatically to sidestep the need
for additional tissue preparation and staining steps. Generative adversarial networks (GAN) were
introduced by Ian J. Goodfellow et al. in 2014 [15–19]. Their brand-new structure gained lots of
attention in various areas such as data augmentation, data enhancement, and data generation.
Particularly in the computer vision domain, GAN are more flexible and provide a new angle for
image translation and augmentation. GAN are composed of two parts: the generator and the
discriminator. The generator produces images from random noise (or from input images with
prior information) to confuse the discriminator, while the discriminator aims to classify the input
image as a pseudo but realistic looking image. The generator and discriminator compete with
each other during training and achieve optimized states while loss functions converge. GAN are
accompanied by fully connected layers in the beginning and then become more powerful after
combination with convolutional layers.

Owing to GAN’s effectiveness, many mutated structures have been developed. For example,
a conditional GAN indicates that the generator input can be either random noise or other
meaningful data input, paving the way for image translation [20]. CycleGAN can be used to train
an image-to-image translation model, which is not highly dependent on paired datasets, by its
additional inverse mapping structure [21]. WGAN introduces Wasserstein distance to improve the
converging process during training [22,23]. LSGAN and hinge loss based GAN bring different
objective functions to ameliorate the performance [24–28]. Further, abundant innovations related
to GAN have been created for specific tasks, such as ∆-GAN using semi-supervised learning,
and DiscoGAN and DualGAN applied to transfer learning [29–31]. GAN usually have better
performance for image translation than traditional methods. The goals of image translation vary
across medical imaging applications, and thus it is hard to find an objective function for a specific
task and even harder to generalize it. Nevertheless, the discriminator in a GAN overcomes these
problems by being trained along with the generator. This optimization process allows a GAN to
avoid creating a complex loss/dice function that is often not generalizable.

The reliability of output images is always the key issue in applying GAN in medical image
generation and translation, and many improvements have been made. For example, the Laplacian
generative adversarial networks (LAPGAN) were designed by Denton et al. to upgrade the
resolution of output images [32]. Isola et al. introduced Pix2pix, a supervised image translation
model [18], and the appearance of a Pix2pix GAN has improved the performance significantly.
The L1 regularization loss in Pix2pix improved the robustness over other conditional GAN,
particularly for medical image generation, translation, and even denoising. Chen et al. applied
GAN in magnetic resonance imaging (MRI) reconstruction and computed tomography (CT)
generation based on MRI [27]. Medical image translation is a rapidly emerging research area of
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GAN [17,33–35], notably their applications to image translation between CT and MRI scans
[21,36–38].

In this paper, the subject is translating CARS images to H&E style by using GAN [39]. If the
CARS-H&E translation technology is successful, pathological diagnosis based on a CARS 3D
capable image modality has the potential to replace H&E staining and allow label-free imaging
of tissue presentation in familiar H&E format but without the need for staining in practical use.
However, there are hardly any image-to-image translation applications reported on CARS-H&E
stained images. Recent works in this area are related to translating H&E style images based on
multimodal CARS/TPEF/SHG [40,41]. They showed great potential for translating multichannel
label-free microscopy to pseudo-H&E staining microscopy. Unfortunately, the resulting image
contrast is not usually accurate, containing misleading information for pathological diagnosis.

In the current study, we propose a more accurate and robust image-translation method and
illustrate the model using thyroid cancer tissue images acquired by CARS microscopy. In contrast
to prior work that transferred the color style of H&E images, we leverage the ground truth
tissue segmentation labels in H&E microscopy during model training and use it to significantly
improve the accuracy in image translation to pseudo-H&E presentation where tissue labels are
not available. Our model integrates UNet+ with seg-cGAN, conditional generative adversarial
networks with partial regularization of segmentation. It replaces UNet with UNet+ as the
Pix2pix cGAN’s generator to enhance pattern extraction and richness of the gradient and applies
the partial regularization strategy to train a part of the generator network as the segmentation
sub-model on a separate segmentation dataset, thus enabling the model to identify correct content
categories during image translation.

2. Materials and methods

The automated image-to-image translation pipeline to map label-free CARS images to pathologic
H&E images by integrating image preprocessing and translation with an improved Pix2Pix
conditional GAN model, called UNet+/seg-cGAN is shown in Fig. 1.

Fig. 1. The automated imaging pipeline developed for CARS-H&E image translation.

2.1. Data collection

The following two datasets were established for model training purposes: (1) CARS-H&E image
translation dataset (200 scans/10 cases), and (2) CARS segmentation dataset (200 scans/10 cases).
The two datasets are paired and share identical CARS images scanned from thyroid tissues. To
construct the CARS-H&E dataset, the same group of tissues was H&E stained and photographed.
Furthermore, CARS images were labeled by pathologists and saved as mask images. Therefore,
we obtained the CARS segmentation dataset by combining these masks with its corresponding
CARS images.

Human thyroid tissue was obtained from patients undergoing thyroid/parathyroid surgery at
Houston Methodist Hospital, Houston, Texas, USA and Shanghai General Hospital, Shanghai,
P.R. China, following an institutional review board approval. The excised tissue samples were
cut into 5 mm chunks and then immediately snap-frozen in liquid nitrogen for storage. Frozen
tissue samples were passively thawed for 30 minutes at room temperature before CARS imaging.
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The sample was first imaged by CARS system and immediately sent for H&E staining afterward.
(Fig. 2)

Fig. 2. The imaging system for acquiring data.

The tissue samples were placed on a 170 µm cover slide (VWR, Radnor, PA, USA) and then
inverted on an imaging chamber to avoid possible compression. For Artificial intelligence-
augmented CARS (iCARS) imaging, the pump beam was tuned to 802 nm while the Stokes beam
was fixed at 1040 nm to probe the symmetric stretching frequency of CH2 bond at 2845 cm−1

[42]. iCARS signals were generated at 663 nm. The image (1024× 1024 pixels) was acquired
and displayed in real-time using the ThorImage 3.0 software (Thorlabs, Inc), and the average laser
output power was about 75 mW for pump beam and 35 mW for Stokes beam. Bright-field images
of the H&E slides were examined with an Olympus BX51 microscope as a standard control.

2.2. Data preprocessing methods

It is important to preprocess raw data before the model training. The data preprocessing improves
the training with high probability in practice. The following three sub-sections describe the key
preprocessing procedures that we applied to optimize the model performance.

2.2.1. Edge fading correction

Microscopy images generated by CARS often have fading issues near or at the edges of the
images. This margin seriously affects the statistical distribution of image pixel values and reduces
the model performance if it is uncorrected. To resolve fading issues, we deployed BaSiC method
proposed by Tiangying et al., a tool that applies intensity normalization based on low rank and
sparse decomposition to the target images [43]. This largely reduced the edge fading compared
to the original CARS images.

2.2.2. Image registration

Many GAN, such as style-transfer GAN, allow training without paired image couples [44–46].
However, these GAN can rarely be applied to medical image translation due to their lack
of precision. Moreover, matched image pairs will always bring a huge improvement to the
performance of the model. Since each tissue is imaged twice on different scanners, the two
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images will be slightly misaligned or distorted even if the tissue was photographed carefully.
Image registration is indispensable for application to impaired images for optimizing the dataset
quality.

Image registration includes two procedures, location of reference points and image transforma-
tion [47,48]. Finding the reference points is one of the most important steps in image registration,
because no matter how fancy the transforming method is, the output will be totally wrong if
the reference points were not located correctly. Nevertheless, the imaging principles are vastly
different between CARS and H&E images. CARS images only have one channel while H&E
images are in the RGB format. Consequently, the automated registration methods easily make
mistakes on locating reference points, thus ruining the entire registration operation.

We implemented a semi-automatic image registration Python tool to display the high probability
reference points, inspired by [49]. The tool allows manual adjustment of the reference points
when the points are incorrectly located. A registration sample is shown in Fig. 3(B). After having
verified the reference points, the affine transformation was applied to obtain the registered H&E
image (see the third image in Fig. 3(B)).

Fig. 3. (A) representative sample of edge shade correction (B) The image registration
pairs CARS and H&E images generated from the same tissue sample. The reference points
(yellow dots) were used for transformation to pair images. The image in the last column is
the H&E image after registration. (C) The figure shows how the augmentation process works.
The yellow rectangles are the cropped useful areas of original images after registration. The
three points with different colors are random points generated from uniform distribution.
The white squares in the images are the cropped images. (D) Cropped CARS and H&E
images of the same thyroid tissue and corresponding mask image which are ready for the
model training.

2.2.3. Image augmentation

After registering the original H&E image, we can further augment data by cropping and rotating
image pairs and adding noise to the CARS images. The cropping size is set as 256× 256.

uniform([0, s − 256])

The cropping strategy uses the uniform distribution to pick up the left-up corner of the
augmented image and crop it off with the size of 256× 256. (Figure 3(C))

The 200 raw image pairs were acquired from scanners and were randomly split into training
(100), validation (40), and testing (60) datasets. The scans from same case were not located
in the different datasets. After registration and augmentation, the number of image pairs were
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multiplied by 40 (i.e. train:validation:test= 4000:1600:2400),

f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1, if x + z<0

1, if x + z>255
x+z

127.5 − 1, if 0 ≤ x + z ≤ 255

where f is the data generator function, x is the pixel values of the original input images, and z is
the added noise with z ∼ uniform([−0.1, 0.1]).

2.2.4. CARS segmentation dataset

The CARS segmentation dataset is based on the CARS-H&E image dataset. The CARS images
were manually labeled by pathologists in three different types of content: thyroid follicle (orange),
background (blue), and cells (grey). The segmentation dataset was simultaneously augmented
along with the CARS-H&E image dataset. Finally, we have 4000, 1600, and 2400 image pairs in
the training, validation, and test datasets (Fig. 3(D)).

2.3. Post-processing

Since a CARS image is cropped to 256× 256 pieces before being entered into the model, we need
to apply a stitching strategy to reconstruct the pseudo-H&E image from the outputs. Thus, we
developed a special stitching strategy to efficiently orGANize the outputs. Since the model easily
makes mistakes at the edge of the image, the input CARS image of the model was deliberately
cropped partially overlapped between the pieces.

During the experiments, we found that the efficiency decreases if the overlapped area is too
large, especially evident when the width of the overlapped edge is larger than half the size of the
input image. However, the advantages of the stitching strategy will not be significant while the
overlapped edges are extremely narrow. Moreover, our cropping strategy can find the optimized
width capable of dividing the boundary length without remainder pixels. The following formula
shows the way to find the optimized width of overlapped edges,

min
0<x< ⌊ C

2 ⌋, x∈N
x · 1{(h−x) mod (C−x)=0}

where x is the optimized overlapped edge width, C is the cropped image size, and h represents
the width of the original image size (h= 256 here).

Through the formula, we can decrease abrupt transition between adjacent cropped images,
thereby minimizing loss of information, increasing precision, and smoothing the stitched edges.
The equation ensures that the computational cost will not increase dramatically by finding a
reasonable h.

The stitching method deals with the overlapped edges of outputs and determines the final
image quality. Here we propose two efficient stitching dice.

2.3.1. Mean dice

The mean dice averages the pixel values from the overlapped area of outputs mapped from
cropped CARS images. For the pixel p on the channel c, we have:

qc =
1
M

∑︂
m∈{1,2,...,M }

pcm

where M is the number of overlapped images at the current pixel, pcm is the predicted value of
the pixel p at the channel c, and qc represents the average value for the pixel p at channel c.
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2.3.2. Median dice

The median dice calculates the pixel values’ median from the overlapped area of outputs, which
are mapped from cropped CARS images. For the pixel P on the channel c, we have:

qc =
1
M

Medianm∈{1,2,...,M }pcm

where M is the number of overlapped images at the current pixel, pcm is the predicted value of
the pixel p at the channel c, and qc is the median value for the pixel p at channel c.

2.3.3. Dynamic dice

Since the quality of a CARS image at the edge is far less than the middle of the image, the
possibility of outliers will increase greatly. The median dice is thus a better choice at image
edges because it is less sensible to the outliers. However, the mean dice is more accurate while
the variance of pixel values is low. Therefore, the median dice is only applied when:

|MeanPi − MedianPi |>
1
n

∑︂
j∈{1,...,n}

|MeanPj − MedianPj |

where pi is the current pixel, and n is the number of pixels in the target image. The dynamic dice
will be efficient while the mean and median are vastly different, but this situation is rare.

2.4. Methods

Although the GAN model has brought huge benefits to image generation and transformation,
there is still room for improvement in better presenting architectural details, especially when
applying the model to highly sensitive patient images. We thus propose a new model, termed
U-Net+&seg-GAN, to improve the fidelity and quality of medical image transformation. The new
model significantly reduces the information loss during the CARS-H&E stained image translation
and increases the accuracy compared to the prevalent Pix2pix conditional GAN model.

Considering that the quality of translated images from CARS is highly sensitive to information
loss, the generator’s structure has been carefully designed so that the information extracted by
each convolutional layer can be efficiently utilized.

The image-to-image translation starts with a basic image reconstruction structure, encoder-
decoder that has two desirable properties: (1) the encoder extracts the information in different
levels by applying sequential blocks of neural network layers, and (2) the decoder can reconstruct
the image in the same shape of the input [19,50]. The layers in the encoder-decoder architecture
do not have to be convolutional. For example, digital images in MNIST dataset only have
resolution of 28× 28× 1 and are good to be raveled as input of the neural networks constructed
by dense layers.

Unlike the basic encoder-decoder architecture, U-Net is most likely to be accompanied by
convolutional layers, which is powerful for image feature extraction [51]. The reason is that
the special skip-connection structure of U-Net allows the convolutional and deconvolutional
layers to be directly connected while they are in the same block level. This design is useful to
vary the gradients and acquire more information for the ending layers, hence improving the loss
convergence process [52,53].

The Pix2pix GAN model uses the U-Net as its generator and achieves a better performance
than the encoder-decoder. However, the limitation of U-Net remains: the skip-connection
combinations between convolutional and deconvolutional blocks are restricted due to the same
shape rule between convolutional block and its related deconvolutional block. To enrich the
skip-connection and vary the gradients further, UNet+ is introduced.
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2.4.1. UNet+ GAN

UNet+, originally designed for image segmentation, is introduced into the Pix2pix GAN model
in our research. The UNet+ overcomes the limitations by its redesigned skip-connections.
Figure 4(A) shows the UNet+, designed by Zhou et al., set as the GAN’s generator. The skip-
connections of U-Net were replaced by up and down samplings in different depths [50,54]. The
downward, upward, and horizontal arrows in Fig. 4 represent the down-sampling, up-sampling,
and skip-connections between convolutional blocks. Different depths in UNet+ vary the feature
extraction levels and enrich more gradients during the loss optimization compared to the U-Net
structure.

Fig. 4. (A) represents the structure of UNet+ GAN’s generator. Layers X0,1, X0,2, and
X0,3 are directly concatenated and then connected to the final layer, which enriches the
gradients of the loss function. (B) is the UNet+/seg-cGAN’s generator. Comparing to (A),
the UNet+/seg-cGAN’s generator compiled the red triangle part as an image segmentation
model. It was simultaneously trained based on the CARS segmentation dataset and with the
entire GAN’s generator network.

2.4.2. UNet+ seg-GAN

Although different categories of content have the same color gamut, they differ in biological
expressions. For example, the white color may not indicate similar components in different
content categories. As shown in Fig. 3(D), the white part with blue mask indicates the background
while the thyroid follicle with white artifacts is labeled under orange mask. It is important to send
to the generator a priori information, such as content categories, which will help the generator
to make better translation decisions. The proposed UNet+/seg-cGAN method is designed to
address this issue. Figure 4(B) shows its generator’s structure. Based on UNet+, the part of
networks in the red triangle was compiled with the categorical cross-entropy loss (Lseg) for the
segmentation model, while the whole networks were compiled for cGAN’s loss. Thus, the
optimization problem becomes:

min
G

max
D

LcGAN(D, G) = Ex∼Pdata [log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] + λL(G)

where G is the UNet+ generator, D is the convolutional discriminator, z represents noises
generated from the uniform distribution added to CARS images during image augmentation,
LcGAN(D, G) represents the general function, and x represents samples randomly chosen from the
real H&E stained image dataset. The regularization part is multiplied by a constant λ (0.5-1),
and θ represents the parameters related to segmentation:

L1(G) = Ex,y,z[|y − G(x, z)|]

L2(G) = Ex,y,z[|y − G(x, z)|2]
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Lseg(Gθseg ) = −

C∑︂
c=1

yc log Gc,θseg (x, z)

Lseg(Gθseg ) represents the categorical loss of the segmentation model, where C is the number of
the content categories in the segmentation dataset. Its related parameters θ are also involved in
GAN’s optimization. We name this strategy partial regularization, which restricts regularization
effects in the specific layers and therefore injects additional information into the target model
(see Algorithm 1).

Overall, we made the following improvements from Pix2pix cGAN. First, the UNet generator
of Pix2pix cGAN was replaced by UNet+ to enhance the feature extraction during convolutional
operations and to vary the loss function’s gradients. Second, the front part of the generator
was compiled as a segmentation sub-model. During the optimization of the whole UNet+,
the sub-model was simultaneously trained on a segmentation dataset. All CARS images were
labeled by mask of different content categories in this dataset. This strategy was named partial
regularization.

3. Results

The models were trained on a TITAN RTX NVIDIA GPU with Adam optimizer (learning
rate= 1e-3∼1e-5, beta1= 0.6, and beta2= 0.5). The training finished while the average change of
generator’s mean square error loss was less than 1e-4.

3.1. Model performance

In Fig. 5, three representative sample groups from the test dataset illustrate the fidelity and quality
of pseudo H&E images. Owing to the differences of photographical mechanism between CARS
and H&E imaging methods, many tissue details in the real H&E stained images cannot be found
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in its corresponding CARS image. However, the UNet+ generator upgraded the utilization of
information in CARS images and accordingly can maintain more biological structures during the
image translation. Also, the sub-segmentation model can help identify the content categories to
strengthen the model performance.

Fig. 5. Representative samples from the test results are showed. The shade corrected CARS
images are inputs of UNet+/seg-cGAN. The columns of pseudo H&E and predicted mask
are images generated by the model. Columns of label H&E and label mask images are gold
standards of the real H&E stained images and segmentation masks of content categories.

In Sample 4 of Fig. 5, the black area on the bottom left of the CARS image was correctly
classified and translated into pseudo H&E staining image, in spite of some missed details in
the CARS image as compared to its real H&E staining image. Since the information cannot be
invented, the non-existent tissue details in the CARS image will reasonably not appear in its
pseudo H&E image.

To analyze how much UNet+/seg-cGAN has improved the translation, we compared UNet+
with other generators such as UNet and basic encoder-decoder without skip-connections. These
generators with different filter numbers were also included in experiments. In a standard UNet
generator, the filter number of the encoder block usually doubles compared to its previous block,
while the filter number of the decoder block is its half compared to the previous one most of the
time. The blocks in the same level in the encoder and decoder can connect each other by the skip
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connection. We name the filter number of the first encoder block the basic filter number, which
equals to the filter number of the final decoder block. Reasonably, the basic filter number should
be the smallest block filter number in the generator.

Since there are two main improvements, including the generator upgrade from UNet to UNet+
and the simultaneous segmentation sub-model training, UNet cGAN, UNet+ cGAN and UNet+
cGAN with segmentation sub-model were trained with same basic filter numbers to illustrate the
performance difference between different generators. A larger size UNet and UNet+ with 128
filter number are presented for reference.

Meanwhile, the UNet cGAN with segmentation sub-model was not constructed because the
UNet+ has its special skip-connection layers, which are friendly to construct a segmentation
sub-model, while the direct skip-connections between encoder blocks and decoder blocks in the
standard UNet do not allow it to train a segmentation sub-model. Table 1 displays the results of
models based on the test dataset. The first column of Table 1 includes the names of the models
and followed by the basic filter numbers of their generators. The second column contains the
numbers of generator parameters of each model. The parameter numbers are identical between
the generators in UNet+ cGAN and UNet+ seg-cGAN with same basic filter number, because the
sub-model training does not modify the generator networks. In the third column, the structural
similarity index (SSIM) is a metric to measure how similar the pseudo H&E image is to its
corresponding real H&E image.

Table 1. Performance of conditional GAN with different generators

Generators (basic filter number) Number of parameters SSIM MSE

U-Net (64) 16,665,219 0.5148 (±0.167) 0.0731 (±0.025)

U-Net (128) 66,622,723 0.6911 (±0.152) 0.0655 (±0.014)

UNet+ (64) 21,948,483 0.7220 (±0.145) 0.0296 (±0.019)

UNet+ (128) 87,675,011 0.7591 (±0.116) 0.0254 (±0.011)

UNet+/seg (32) 5,501,987 0.6179 (±0.125) 0.0129 (±0.013)

UNet+ CycleGAN (64) 21,948,483 0.8125 (±0.109) 0.0281 (±0.089)

UNet+/seg (64) 21,948,483 0.8917 (±0.071) 0.0079 (±0.004)

UNet+/seg (128) 87,675,011 0.9066 (±0.065) 0.0076 (±0.003)

The images are all scaled between 0 and 1 before the SSIM score calculation following the
same range rule for input arrays. The SSIM score is a real number between 0 and 1. The higher
the SSIM score, the more similar the two images. In the last column is the mean square error
(MSE), which measures the difference between two related images. The lower the MSE score,
the more similar the two images.

Table 1 shows that the UNet+/seg strategy is the best performer with same or less parameters as
measured by SSIM and MSE metrics. Note that because additional information from segmentation
dataset was imported by training the CARS-H&E generator and CARS segmentation model
simultaneously. The CARS segmentation model is a sub-model of CARS-H&E generator and
shares its most parameters with the latter. The information about content categories helped the
generator to better understand the CARS images and ameliorated the converging process. Since
the objective problem is about translating from CARS images into H&E images, we do not need
to train with the sub-model and directly obtained the UNet+ networks from UNet+ seg-cGAN,
which has better performance than UNet+ from UNet+ cGAN. The generator’s performance is
improved while the generator structures stay identical. In addition, the performance of pseudo
H&E stained images are slightly improved by using proposed stitching strategies. There are
some prior works related to similar research [55,56]. In this paper, we compare our model to
CycleGAN, even their inputs are based on 3 types of scans [41]. We re-trained a CycleGAN
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model based on our data. The CycleGAN model performed worse than UNet+ seg-cGAN. UNet+
seg-cGAN recognizes better content categories, and therefore does less wrong color mapping.
For example, in the ex2 of Fig. 6, the CycleGAN failed to recognize the background and did the
wrong translation while UNet+ seg-cGAN did it correctly.

Fig. 6. Five test samples after stitching were shown above. The first column contains CARS
images as UNet+/seg-cGAN’s inputs. Pseudo H&E images generated from UNet+/seg-
cGAN and UNet+ CycleGAN are located at the second column and third column. Key
structures were merely kept comparing to the Real H&E images. However, UNet+CycleGAN
has much more color inversion problem than UNet+/seg-cGAN.

Table 2 shows the MSE and the SSIM of the stitching area between pseudo images and real
H&E stained images. N/A is the control strategy (without any stitching method). The performance
of the groups implemented with stitching are slightly better than the control. Figure 6 displays
samples after stitching with the dynamic method. Zooming into the tissue details, there is almost
no trace of splicing in pseudo H&E images. The tissue structures in the images become more
coherent, and this reduces the probability of misdiagnosis.
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Table 2. Stitching strategies’ comparison.

Metrics Mean Median Dynamic N/A

MSE 0.0074 (±0.006) 0.0071 (±0.007) 0.0079 (±0.004) 0.0085 (±0.009)

SSIM 0.8810 (±0.072) 0.8807 (±0.074) 0.8917 (±0.071) 0.8751 (±0.079)

4. Discussion

In the model, UNet was replaced by UNet+ and the partial regularization strategy was applied
with UNet+. The partial regularization allows UNet+/seg-cGAN to construct a sub-model
simultaneously during training, which brings additional information into GAN’s generator from
CARS segmentation dataset and improves the converging process during training. Accordingly,
the generator for CARS-H&E image translation has improved significantly without increasing its
number of parameters.

The perceptual validation aims to test whether the pseudo H&E images generated by UNet+/seg-
cGAN can fool humans. Just like most of the other GAN models, the output images are always
slightly fuzzy. This consequently allows random participants to easily filter out the pseudo
images with accuracy more than 70% without any pathological knowledge. Also, the outputs
have slightly lower quality than the gold standards as the information that does not exist in
CARS images but is present in targeted H&E images cannot be invented during image-to-image
translation. The goal of our work is to generate H&E-like label-free CARS images, which
are more helpful for pathologists in interpretation and help make the label-free modality more
acceptable for pathologic diagnosis.

The pathologists participating in this study claimed that the results showed the huge potential
of the model for the pathological diagnosis only based on translated images from CARS, however
there are still some important structures missing during image translation. Figure 6 illustrates
such examples. It appears that pseudo H&E images maintain most tissue architectural information
and lots of cytological details. For example, in the top corner of ex1 of Fig. 6, the black artifacts
may confuse pathologists during diagnosis. Also, the pseudo images may tend to have less quality
than the actual H&E images due to the resolution of input CARS images, e.g., cellular clarity
and nuclear or chromatin detail are less obvious.

The translation from CARS images will allow pathologists and clinicians to waive the tissue
staining procedure during diagnosis to save the time and cost. The improvements made in
this paper contributed to this ultimate goal. Coupling with endoscopy techniques, real-time
acquisition and presentation of label-free CARS images in H&E format would realize pathology
diagnosis in vivo.
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